Вантовый мост - определение. Что такое Вантовый мост
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Вантовый мост - определение

ТИП ВИСЯЧЕГО МОСТА
Вантовые мосты
  • самым длинным основным пролётом в мире]]
  • [[Мост Октавио Фриас де Оливейра]] (Сан-Паулу) — на одном пилоне подвешены два скрещивающихся мостовых пролёта
  • [[Новый железнодорожный мост]] (Белград) — первый вантовый железнодорожный мост в мире.
Найдено результатов: 428
Вантовый мост         

Висячий мост с основной несущей конструкцией в виде геометрически неизменяемой висячей (вантовой) фермы, выполненной из прямолинейных стальных канатов-вантов. Современный В. м. имеют стальные, а в отдельных случаях и железобетонные балки жёсткости, поддерживаемые наклонными вантами и опирающиеся на пилоны (рис.). В. м. легки, экономичны и находят всё большее применение на автомобильных дорогах для перекрытия пролётов, достигающих 300 м. См. также Мосты.

Вантовый мост через гавань р. Днепр в Киеве.

ВАНТОВЫЙ МОСТ         
висячий мост, в котором основная несущая конструкция - ферма - выполнена из стальных тросов (вантов).
Вантовый мост         
Ва́нтовый мост — тип висячего моста, состоящий из одного или более пилонов, соединённых с дорожным полотном посредством стальных тросов — вант. В отличие от висячих мостов, где дорожное полотно поддерживается вертикальными тросами, прикреплёнными к протянутым по всей длине моста основным несущим тросам, у вантовых мостов тросы (ванты) соединяются непосредственно с пилоном.
Рыбальский вантовый мост (Киев)         
Вантовый мост (Киев); Рыбальский вантовый мост
Рыба́льский ва́нтовый мост — мост через гавань Днепра. Открыт 23 сентября 1963 годаМіст через Гавань // Вечірній Київ.
Мост измерительный         
  • Музее энергетики Урала]]
  • моста Кельвина]]
Мост измерительный; Мост Уинстона; Мост Уитстона; Мост Вистона; Мост Витстона

электрический прибор для измерения сопротивлений, ёмкостей, индуктивностей и др. электрических величин; представляет собой измерительную мостовую цепь (См. Мостовая цепь), действие которой основано на методе сравнения измеряемой величины с образцовой мерой. Метод сравнения даёт весьма точные результаты, вследствие чего М. и. получили широкое распространение как в лабораторной, так и в производственной практике.

Схема простейшего М. и. постоянного тока для измерения активных (омических) сопротивлений дана на рис. На входные зажимы A и B (на диагональ питания) подают напряжение (ток) питания, а к выходным зажимам C и D (к измерительной диагонали) подключают нуль-индикатор или измерительный прибор. Регулируя одно или несколько переменных сопротивлений, добиваются равенства потенциалов в точках C и D. Момент его установления определяют по нуль-индикатору, показывающему отсутствие тока в измерительной диагонали (уравновешенный мост).

Для уравновешенного М. и. соотношение сопротивлений плеч выражается равенством R1·R4 = R2·R3 (условие равновесия). Для измерения сопротивления Rx его включают в одно из плеч М. и., например на место R1. При равновесии моста

Точность измерения Rx при этом определяется точностью калиброванных сопротивлений R2, P3, R4, а также чувствительностью нуль-индикатора. Показанный на рис. четырёхплечий одинарный М. и. применяется обычно для измерения электрических сопротивлений R ≥ 1 ом. На результат измерения одинарным М. и. сопротивлений R < 1 ом существенно влияют сопротивления соединительных проводов и контактов, т. к. они становятся соизмеримыми с Rx. Для измерения сопротивлений от 1 мком до 1 ом применяют двойные или многоплечие М. и. Существуют комбинированные одинарно-двойные М. и., позволяющие измерять сопротивления в диапазоне от 1 мком до 1 Мом с погрешностью порядка ± 0,002\%. Иногда, не регулируя сопротивлений, фиксируют результаты измерений прибором (проградуированным в единицах измеряемой величины), включенным в измерительную диагональ (неуравновешенный мост).

Для измерения ёмкости, индуктивности, коэффициента взаимоиндуктивности и др. применяют уравновешенные М. и. переменного тока. Результаты измерений этих величин зависят от частоты питающего мост напряжения, поэтому измерения обычно производят на определённой заданной частоте. Принципиальная схема М. и. переменного тока подобна схеме, приведённой на рис., с той разницей, что каждое плечо моста может содержать индуктивность, ёмкость и сопротивление. Уравновешивание М. и. переменного тока обычно достигается регулировкой не одного, а двух элементов, т. к. равновесие такого М. и. зависит от соотношения полных сопротивлений (импедансов) его плеч, которые при наличии в них ёмкостей и индуктивностей являются комплексными величинами. Значения измеряемых величин определяют из условия равновесия моста.

Наиболее часто в качестве источников переменного тока в М. и. применяют генераторы измерительные (См. Генератор измерительный) звуковой частоты, реже для этой цели используют сеть переменного тока промышленной частоты (50 гц). Нуль-индикатором для М. и. постоянного тока служит магнитоэлектрический гальванометр, а для М. и. переменного тока - вибрационный гальванометр, телефон, электронный индикатор со стрелочным указателем или с электроннолучевой трубкой. Процесс уравновешивания М. и. современных моделей автоматизирован, и результат измерений представляется в виде числа на отсчётном устройстве. Такие приборы называют цифровыми мостами.

Лит.: Городовский А. Ф., Мосты постоянного тока, М. - Л., 1964; Нижний С. М., Мосты переменного тока, М. - Л., 1966; Шкурин Г. П., Справочник по электро- и электронно-измерительным приборам, М., 1972.

Г. П. Шкурин.

Электрическая схема одинарного моста постоянного тока: Е - источник тока; Г - гальванометр (нуль-индикатор); AC, CB, BD, DA - плечи моста; Rx - измеряемое сопротивление; R2, R3, R4 - калиброванные установочные сопротивления.

Мост «777»         
CОВМЕЩЁННЫЙ АВТОМОБИЛЬНО-ЖЕЛЕЗНОДОРОЖНЫЙ МОСТ ЧЕРЕЗ ЕНИСЕЙ В КРАСНОЯРСКE.
Мост "777" (Красноярск); Мост 777 (Красноярск); Мост 777; Мост «777» (Красноярск); Коркинский мост; Мост "777"
Коркинский мост — совмещённый автомобильно-железнодорожный мост через реку Енисей в городе Красноярске.
ИЗМЕРИТЕЛЬНЫЙ МОСТ         
  • Музее энергетики Урала]]
  • моста Кельвина]]
Мост измерительный; Мост Уинстона; Мост Уитстона; Мост Вистона; Мост Витстона
устройство для измерения электрических сопротивлений, емкостей, индуктивностей и т. д. методом сравнения с образцовой мерой; выполнено по схеме мостовой цепи с гальванометром в качестве нуль-индикатора.
Измерительный мост         
  • Музее энергетики Урала]]
  • моста Кельвина]]
Мост измерительный; Мост Уинстона; Мост Уитстона; Мост Вистона; Мост Витстона
Измери́тельный мост (мост Уи́тстона, мо́стик Ви́тстона, ) — электрическая схема или устройство для измерения электрического сопротивления. Предложен в 1833 году Самуэлем Хантером Кристи () и в 1843 году усовершенствован Чарльзом Уитстоном.
Багратион (мост)         
Багратион, мост; Багратион мост; Мост Багратион; Мост «Багратион»
Мост Багратио́н — торгово-пешеходный мост через реку Москву, открытый в 1997 году и ставший первым сооружением комплекса «Москва-Сити». Мост соединяет Краснопресненскую набережную, станцию метро «Выставочная» и «Москву-Сити» с набережной Тараса Шевченко и Башней 2000.
Глиникский мост         
Глинике; Мост Глинике; Мост шпионов
Глиникский мост () — мост в Германии через реку Хафель, соединяющий берлинский район Ванзе в округе Штеглиц-Целендорф и прилегающий город Потсдам. Своим названием мост обязан находившемуся поблизости поместью Клайн-Глинике, от которого в настоящее время остался [[охотничи�

Википедия

Вантовый мост

Ва́нтовый мост — тип висячего моста, состоящий из одного или более пилонов, соединённых с дорожным полотном посредством стальных тросов — вант. В отличие от висячих мостов, где дорожное полотно поддерживается вертикальными тросами, прикреплёнными к протянутым по всей длине моста основным несущим тросам, у вантовых мостов тросы (ванты) соединяются непосредственно с пилоном.

Большим преимуществом вантовых мостов перед висячими является меньшая подвижность дорожного полотна, что делает их пригодными для использования в качестве железнодорожных переправ. Первый железнодорожный вантовый мост был построен в 1979 году в Белграде (Новый железнодорожный мост).

Вантовые мосты в широких масштабах строятся с 1950-х годов. Первым современным вантовым мостом является мост Стромсунд в Швеции, открытый в 1956 году.

В СССР первый вантовый мост под автомобильное движение пролетом 80 м был построен в Грузинской ССР через реку Магану на Верхне-Сванетской дороге в 1932 году по проекту профессора Е. И. Крыльцова.

Первыми крупными вантовыми мостами, построенными в СССР, были мост через реку Нарын, Рыбальский мост через гавань Днепра в Киеве (1963 год), Московский мост через Днепр в Киеве (1976 год), вантовый мост в Риге (1981 год). В 1979 году было открыто движение по Октябрьскому мосту в Череповце через реку Шексну — первому вантовому мосту, построенному на территории России.

Русский мост через пролив Босфор Восточный при общей длине в 1886 м имеет самый большой в мире пролёт (1104 м), поддерживаемый двумя пилонами.

Вантовый виадук Мийо (Франция) имеет самую большую в мире высоту пилонов — 343 м, при этом максимальная длина пролётных строений не превышает 342 м, а общая длина виадука максимальна для вантовых мостов и составляет 2460 м.